Green Things

Life's a garden. Dig it.


Ask me anything  
Reblogged from neurosciencestuff
neurosciencestuff:

Neuroscientists identify key role of language gene
Neuroscientists have found that a gene mutation that arose more than half a million years ago may be key to humans’ unique ability to produce and understand speech.
Researchers from MIT and several European universities have shown that the human version of a gene called Foxp2 makes it easier to transform new experiences into routine procedures. When they engineered mice to express humanized Foxp2, the mice learned to run a maze much more quickly than normal mice.
The findings suggest that Foxp2 may help humans with a key component of learning language — transforming experiences, such as hearing the word “glass” when we are shown a glass of water, into a nearly automatic association of that word with objects that look and function like glasses, says Ann Graybiel, an MIT Institute Professor, member of MIT’s McGovern Institute for Brain Research, and a senior author of the study.
“This really is an important brick in the wall saying that the form of the gene that allowed us to speak may have something to do with a special kind of learning, which takes us from having to make conscious associations in order to act to a nearly automatic-pilot way of acting based on the cues around us,” Graybiel says.
Wolfgang Enard, a professor of anthropology and human genetics at Ludwig-Maximilians University in Germany, is also a senior author of the study, which appears in the Proceedings of the National Academy of Sciences this week. The paper’s lead authors are Christiane Schreiweis, a former visiting graduate student at MIT, and Ulrich Bornschein of the Max Planck Institute for Evolutionary Anthropology in Germany.
All animal species communicate with each other, but humans have a unique ability to generate and comprehend language. Foxp2 is one of several genes that scientists believe may have contributed to the development of these linguistic skills. The gene was first identified in a group of family members who had severe difficulties in speaking and understanding speech, and who were found to carry a mutated version of the Foxp2 gene.
In 2009, Svante Pääbo, director of the Max Planck Institute for Evolutionary Anthropology, and his team engineered mice to express the human form of the Foxp2 gene, which encodes a protein that differs from the mouse version by only two amino acids. His team found that these mice had longer dendrites — the slender extensions that neurons use to communicate with each other — in the striatum, a part of the brain implicated in habit formation. They were also better at forming new synapses, or connections between neurons.
Pääbo, who is also an author of the new PNAS paper, and Enard enlisted Graybiel, an expert in the striatum, to help study the behavioral effects of replacing Foxp2. They found that the mice with humanized Foxp2 were better at learning to run a T-shaped maze, in which the mice must decide whether to turn left or right at a T-shaped junction, based on the texture of the maze floor, to earn a food reward.
The first phase of this type of learning requires using declarative memory, or memory for events and places. Over time, these memory cues become embedded as habits and are encoded through procedural memory — the type of memory necessary for routine tasks, such as driving to work every day or hitting a tennis forehand after thousands of practice strokes.
Using another type of maze called a cross-maze, Schreiweis and her MIT colleagues were able to test the mice’s ability in each of type of memory alone, as well as the interaction of the two types. They found that the mice with humanized Foxp2 performed the same as normal mice when just one type of memory was needed, but their performance was superior when the learning task required them to convert declarative memories into habitual routines. The key finding was therefore that the humanized Foxp2 gene makes it easier to turn mindful actions into behavioral routines.
The protein produced by Foxp2 is a transcription factor, meaning that it turns other genes on and off. In this study, the researchers found that Foxp2 appears to turn on genes involved in the regulation of synaptic connections between neurons. They also found enhanced dopamine activity in a part of the striatum that is involved in forming procedures. In addition, the neurons of some striatal regions could be turned off for longer periods in response to prolonged activation — a phenomenon known as long-term depression, which is necessary for learning new tasks and forming memories.
Together, these changes help to “tune” the brain differently to adapt it to speech and language acquisition, the researchers believe. They are now further investigating how Foxp2 may interact with other genes to produce its effects on learning and language.
This study “provides new ways to think about the evolution of Foxp2 function in the brain,” says Genevieve Konopka, an assistant professor of neuroscience at the University of Texas Southwestern Medical Center who was not involved in the research. “It suggests that human Foxp2 facilitates learning that has been conducive for the emergence of speech and language in humans. The observed differences in dopamine levels and long-term depression in a region-specific manner are also striking and begin to provide mechanistic details of how the molecular evolution of one gene might lead to alterations in behavior.”

neurosciencestuff:

Neuroscientists identify key role of language gene

Neuroscientists have found that a gene mutation that arose more than half a million years ago may be key to humans’ unique ability to produce and understand speech.

Researchers from MIT and several European universities have shown that the human version of a gene called Foxp2 makes it easier to transform new experiences into routine procedures. When they engineered mice to express humanized Foxp2, the mice learned to run a maze much more quickly than normal mice.

The findings suggest that Foxp2 may help humans with a key component of learning language — transforming experiences, such as hearing the word “glass” when we are shown a glass of water, into a nearly automatic association of that word with objects that look and function like glasses, says Ann Graybiel, an MIT Institute Professor, member of MIT’s McGovern Institute for Brain Research, and a senior author of the study.

“This really is an important brick in the wall saying that the form of the gene that allowed us to speak may have something to do with a special kind of learning, which takes us from having to make conscious associations in order to act to a nearly automatic-pilot way of acting based on the cues around us,” Graybiel says.

Wolfgang Enard, a professor of anthropology and human genetics at Ludwig-Maximilians University in Germany, is also a senior author of the study, which appears in the Proceedings of the National Academy of Sciences this week. The paper’s lead authors are Christiane Schreiweis, a former visiting graduate student at MIT, and Ulrich Bornschein of the Max Planck Institute for Evolutionary Anthropology in Germany.

All animal species communicate with each other, but humans have a unique ability to generate and comprehend language. Foxp2 is one of several genes that scientists believe may have contributed to the development of these linguistic skills. The gene was first identified in a group of family members who had severe difficulties in speaking and understanding speech, and who were found to carry a mutated version of the Foxp2 gene.

In 2009, Svante Pääbo, director of the Max Planck Institute for Evolutionary Anthropology, and his team engineered mice to express the human form of the Foxp2 gene, which encodes a protein that differs from the mouse version by only two amino acids. His team found that these mice had longer dendrites — the slender extensions that neurons use to communicate with each other — in the striatum, a part of the brain implicated in habit formation. They were also better at forming new synapses, or connections between neurons.

Pääbo, who is also an author of the new PNAS paper, and Enard enlisted Graybiel, an expert in the striatum, to help study the behavioral effects of replacing Foxp2. They found that the mice with humanized Foxp2 were better at learning to run a T-shaped maze, in which the mice must decide whether to turn left or right at a T-shaped junction, based on the texture of the maze floor, to earn a food reward.

The first phase of this type of learning requires using declarative memory, or memory for events and places. Over time, these memory cues become embedded as habits and are encoded through procedural memory — the type of memory necessary for routine tasks, such as driving to work every day or hitting a tennis forehand after thousands of practice strokes.

Using another type of maze called a cross-maze, Schreiweis and her MIT colleagues were able to test the mice’s ability in each of type of memory alone, as well as the interaction of the two types. They found that the mice with humanized Foxp2 performed the same as normal mice when just one type of memory was needed, but their performance was superior when the learning task required them to convert declarative memories into habitual routines. The key finding was therefore that the humanized Foxp2 gene makes it easier to turn mindful actions into behavioral routines.

The protein produced by Foxp2 is a transcription factor, meaning that it turns other genes on and off. In this study, the researchers found that Foxp2 appears to turn on genes involved in the regulation of synaptic connections between neurons. They also found enhanced dopamine activity in a part of the striatum that is involved in forming procedures. In addition, the neurons of some striatal regions could be turned off for longer periods in response to prolonged activation — a phenomenon known as long-term depression, which is necessary for learning new tasks and forming memories.

Together, these changes help to “tune” the brain differently to adapt it to speech and language acquisition, the researchers believe. They are now further investigating how Foxp2 may interact with other genes to produce its effects on learning and language.

This study “provides new ways to think about the evolution of Foxp2 function in the brain,” says Genevieve Konopka, an assistant professor of neuroscience at the University of Texas Southwestern Medical Center who was not involved in the research. “It suggests that human Foxp2 facilitates learning that has been conducive for the emergence of speech and language in humans. The observed differences in dopamine levels and long-term depression in a region-specific manner are also striking and begin to provide mechanistic details of how the molecular evolution of one gene might lead to alterations in behavior.”

Reblogged from elenamorelli
elenamorelli:

{ across the universe }

elenamorelli:

{ across the universe }

(via failure-is-an-option)

Reblogged from klairenee

SCIENCE SIDE OF TUMBLR!!

iamscienceside:

klairenee:

iamscienceside:

klairenee:

I NEED HELP WITH MY SCIENCE HW
PLEASE

Mitochondria is the powerhouse of the cell.

uhhh no that’s not what I needed to know

Yes, it is.

(via chroniclesofachemist)

Reblogged from mizisham
Reblogged from currentsinbiology
currentsinbiology:

Stalked protozoan attached to a filamentous green algae with bacteria on its surface (160x)
Paul W. Johnson
University of Rhode Island, Kingston, Rhode Island, USA
Technique: Nomarski Differential Interference Contrast

currentsinbiology:

Stalked protozoan attached to a filamentous green algae with bacteria on its surface (160x)

Paul W. Johnson

University of Rhode Island, Kingston, Rhode Island, USA

Technique: Nomarski Differential Interference Contrast

(via chroniclesofachemist)

Reblogged from neuromorphogenesis
Nothing in life is to be feared, it is only to be understood. Now is the time to understand more, so that we may fear less. Marie Curie (via chroniclesofachemist)

(Source: neuromorphogenesis, via chroniclesofachemist)

Reblogged from blazepress
blazepress:

Volcanic eruption seen from space.

blazepress:

Volcanic eruption seen from space.

(via fuckyeah-space)

Reblogged from retromantique
Science is neither a philosophy nor a belief system. It is a combination of mental operations that has become increasingly the habit of educated peoples, a culture of illuminations hit upon by a fortunate turn of history that yielded the most effective way of learning about the real world ever conceived. Edward O. Wilson, Consilience: The Unity of Knowledge (via retromantique)

(via sunnybiochemistry)

Reblogged from dimensao7
Reblogged from hlaar
science-and-things:

hlaar:

So I’ve heard somebody wanted to see a gif of that moment when Brian Cox was ran over by Stephen Hawking. Here it is, I hope it loads.


This gif changed my life

science-and-things:

hlaar:

So I’ve heard somebody wanted to see a gif of that moment when Brian Cox was ran over by Stephen Hawking. Here it is, I hope it loads.

This gif changed my life

(via chroniclesofachemist)

Reblogged from wildcat2030
wildcat2030:

Evolution’s Random Paths Lead to One Place - A massive statistical study suggests that the final evolutionary outcome — fitness — is predictable. - In his fourth-floor lab at Harvard University, Michael Desai has created hundreds of identical worlds in order to watch evolution at work. Each of his meticulously controlled environments is home to a separate strain of baker’s yeast. Every 12 hours, Desai’s robot assistants pluck out the fastest-growing yeast in each world — selecting the fittest to live on — and discard the rest. Desai then monitors the strains as they evolve over the course of 500 generations. His experiment, which other scientists say is unprecedented in scale, seeks to gain insight into a question that has long bedeviled biologists: If we could start the world over again, would life evolve the same way? Many biologists argue that it would not, that chance mutations early in the evolutionary journey of a species will profoundly influence its fate. “If you replay the tape of life, you might have one initial mutation that takes you in a totally different direction,” Desai said, paraphrasing an idea first put forth by the biologist Stephen Jay Gould in the 1980s. Desai’s yeast cells call this belief into question. According to results published in Science in June, all of Desai’s yeast varieties arrived at roughly the same evolutionary endpoint (as measured by their ability to grow under specific lab conditions) regardless of which precise genetic path each strain took. It’s as if 100 New York City taxis agreed to take separate highways in a race to the Pacific Ocean, and 50 hours later they all converged at the Santa Monica pier. The findings also suggest a disconnect between evolution at the genetic level and at the level of the whole organism. Genetic mutations occur mostly at random, yet the sum of these aimless changes somehow creates a predictable pattern. The distinction could prove valuable, as much genetics research has focused on the impact of mutations in individual genes. For example, researchers often ask how a single mutation might affect a microbe’s tolerance for toxins, or a human’s risk for a disease. But if Desai’s findings hold true in other organisms, they could suggest that it’s equally important to examine how large numbers of individual genetic changes work in concert over time. “There’s a kind of tension in evolutionary biology between thinking about individual genes and the potential for evolution to change the whole organism,” said Michael Travisano, a biologist at the University of Minnesota. “All of biology has been focused on the importance of individual genes for the last 30 years, but the big take-home message of this study is that’s not necessarily important.” (via Yeast Study Suggests Genetics Are Random but Evolution Is Not | Simons Foundation)

wildcat2030:

Evolution’s Random Paths Lead to One Place
-
A massive statistical study suggests that the final evolutionary outcome — fitness — is predictable.
-
In his fourth-floor lab at Harvard University, Michael Desai has created hundreds of identical worlds in order to watch evolution at work. Each of his meticulously controlled environments is home to a separate strain of baker’s yeast. Every 12 hours, Desai’s robot assistants pluck out the fastest-growing yeast in each world — selecting the fittest to live on — and discard the rest. Desai then monitors the strains as they evolve over the course of 500 generations. His experiment, which other scientists say is unprecedented in scale, seeks to gain insight into a question that has long bedeviled biologists: If we could start the world over again, would life evolve the same way? Many biologists argue that it would not, that chance mutations early in the evolutionary journey of a species will profoundly influence its fate. “If you replay the tape of life, you might have one initial mutation that takes you in a totally different direction,” Desai said, paraphrasing an idea first put forth by the biologist Stephen Jay Gould in the 1980s. Desai’s yeast cells call this belief into question. According to results published in Science in June, all of Desai’s yeast varieties arrived at roughly the same evolutionary endpoint (as measured by their ability to grow under specific lab conditions) regardless of which precise genetic path each strain took. It’s as if 100 New York City taxis agreed to take separate highways in a race to the Pacific Ocean, and 50 hours later they all converged at the Santa Monica pier. The findings also suggest a disconnect between evolution at the genetic level and at the level of the whole organism. Genetic mutations occur mostly at random, yet the sum of these aimless changes somehow creates a predictable pattern. The distinction could prove valuable, as much genetics research has focused on the impact of mutations in individual genes. For example, researchers often ask how a single mutation might affect a microbe’s tolerance for toxins, or a human’s risk for a disease. But if Desai’s findings hold true in other organisms, they could suggest that it’s equally important to examine how large numbers of individual genetic changes work in concert over time. “There’s a kind of tension in evolutionary biology between thinking about individual genes and the potential for evolution to change the whole organism,” said Michael Travisano, a biologist at the University of Minnesota. “All of biology has been focused on the importance of individual genes for the last 30 years, but the big take-home message of this study is that’s not necessarily important.” (via Yeast Study Suggests Genetics Are Random but Evolution Is Not | Simons Foundation)

Reblogged from neurosciencestuff
neurosciencestuff:

Deconstructing the placebo response: Why does it work in treating depression?
In the past three decades, the power of placebos has gone through the roof in treating major depressive disorder. In clinical trials for treating depression over that period of time, researchers have reported significant increases in patient’s response rates to placebos — the simple sugar pills given to patients who think that it may be actual medication.
New research conducted by UCLA psychiatrists helps explain how placebos can have such a powerful effect on depression.
“In short,” said Andrew Leuchter, the study’s first author and a professor of psychiatry at the UCLA Semel Institute for Neuroscience and Human Behavior, “if you think a pill is going to work, it probably will.”
The UCLA researchers examined three forms of treatment. One was supportive care in which a therapist assessed the patient’s risk and symptoms, and provided emotional support and encouragement but refrained from providing solutions to the patient’s issues that might result in specific therapeutic effects. The other two treatments provided the same type of therapy, but patients also received either medication or placebos.
The researchers found that treatment that incorporating either type of pill — real medication or placebo — yielded better outcomes than supportive care alone. Further, the success of the placebo treatment was closely correlated to people’s expectations before they began treatment. Those who believed that medication was likely to help them were much more likely to respond to placebos. Their belief in the effectiveness of medication was not related to the likelihood of benefitting from medication, however.
“Our study indicates that belief in ‘the power of the pill’ uniquely drives the placebo response, while medications are likely to work regardless of patients’ belief in their effectiveness,” Leuchter said.
The study appears in the current online edition of the British Journal of Psychiatry.
At the beginning and end of the study, patients were asked to complete the Hamilton Rating Scale for Depression, giving researchers a quantitative assessment of how their depression levels changed during treatment. Those who received antidepressant medication and supportive care improved an average of 46 percent, patients who received placebos and supportive care improved an average of 36 percent, and those who received supportive care alone improved an average of just 5 percent.
“Interestingly, while we found that medication was more effective than placebo, the difference was modest,” Leuchter said.
The researchers also found that people who received supportive care alone were more likely to discontinue treatment early than those who received pills.
People with major depressive disorder have a persistent low mood, low self-esteem and a loss of pleasure in things they once enjoyed. The disorder can be disabling, and it can affect a person’s family, work or school life, sleeping and eating habits, and overall health.
In the double-blind study, 88 people ages 18 to 65 who had been diagnosed with depression were given eight weeks of treatment. Twenty received supportive care alone, 29 received a placebo with supportive care and 39 received actual medication with supportive care.
The researchers measured the patients’ expectations for how effective they thought medication and general treatment would be, as well as their impressions of the strength of their relationship with the supportive care provider.
“These results suggest a unique role for people’s expectations about their medication in engendering a placebo response,” Leuchter said. “Higher expectations of medication effectiveness predicted an improvement in placebo-treated subjects, and it’s important to note that people’s expectations about how effective a medication may be were already formed before they entered the trial.”
Leuchter said the research indicates that factors such as direct-to-consumer advertising may be shaping peoples’ attitudes about medication. “It may not be an accident that placebo response rates have soared at the same time the pharmaceutical companies are spending $10 billion a year on consumer advertising.”
(Image credit: © Chris Lamphear)

neurosciencestuff:

Deconstructing the placebo response: Why does it work in treating depression?

In the past three decades, the power of placebos has gone through the roof in treating major depressive disorder. In clinical trials for treating depression over that period of time, researchers have reported significant increases in patient’s response rates to placebos — the simple sugar pills given to patients who think that it may be actual medication.

New research conducted by UCLA psychiatrists helps explain how placebos can have such a powerful effect on depression.

“In short,” said Andrew Leuchter, the study’s first author and a professor of psychiatry at the UCLA Semel Institute for Neuroscience and Human Behavior, “if you think a pill is going to work, it probably will.”

The UCLA researchers examined three forms of treatment. One was supportive care in which a therapist assessed the patient’s risk and symptoms, and provided emotional support and encouragement but refrained from providing solutions to the patient’s issues that might result in specific therapeutic effects. The other two treatments provided the same type of therapy, but patients also received either medication or placebos.

The researchers found that treatment that incorporating either type of pill — real medication or placebo — yielded better outcomes than supportive care alone. Further, the success of the placebo treatment was closely correlated to people’s expectations before they began treatment. Those who believed that medication was likely to help them were much more likely to respond to placebos. Their belief in the effectiveness of medication was not related to the likelihood of benefitting from medication, however.

“Our study indicates that belief in ‘the power of the pill’ uniquely drives the placebo response, while medications are likely to work regardless of patients’ belief in their effectiveness,” Leuchter said.

The study appears in the current online edition of the British Journal of Psychiatry.

At the beginning and end of the study, patients were asked to complete the Hamilton Rating Scale for Depression, giving researchers a quantitative assessment of how their depression levels changed during treatment. Those who received antidepressant medication and supportive care improved an average of 46 percent, patients who received placebos and supportive care improved an average of 36 percent, and those who received supportive care alone improved an average of just 5 percent.

“Interestingly, while we found that medication was more effective than placebo, the difference was modest,” Leuchter said.

The researchers also found that people who received supportive care alone were more likely to discontinue treatment early than those who received pills.

People with major depressive disorder have a persistent low mood, low self-esteem and a loss of pleasure in things they once enjoyed. The disorder can be disabling, and it can affect a person’s family, work or school life, sleeping and eating habits, and overall health.

In the double-blind study, 88 people ages 18 to 65 who had been diagnosed with depression were given eight weeks of treatment. Twenty received supportive care alone, 29 received a placebo with supportive care and 39 received actual medication with supportive care.

The researchers measured the patients’ expectations for how effective they thought medication and general treatment would be, as well as their impressions of the strength of their relationship with the supportive care provider.

“These results suggest a unique role for people’s expectations about their medication in engendering a placebo response,” Leuchter said. “Higher expectations of medication effectiveness predicted an improvement in placebo-treated subjects, and it’s important to note that people’s expectations about how effective a medication may be were already formed before they entered the trial.”

Leuchter said the research indicates that factors such as direct-to-consumer advertising may be shaping peoples’ attitudes about medication. “It may not be an accident that placebo response rates have soared at the same time the pharmaceutical companies are spending $10 billion a year on consumer advertising.”

(Image credit: © Chris Lamphear)

Reblogged from biocanvas
biocanvas:

Rotifers
Rotifers are tiny multicellular organisms found commonly in freshwater environments around the world. They are largely considered to be the smallest animals on Earth, composed of over 1,000 cells complete with a full digestive system and jaws but only reaching the size of a microscopic amoeba. They can be found in the most extreme environments, including the Mojave Desert where they enter dormancy when their habitats dry up. Scientists in Antarctica have recently discovered single cell organisms existing deep below ice sheets, but they’re looking even harden to see if more complex creatures like rotifers have been able to survive without sunlight in sub-zero temperatures for nearly a million years.
Image by Dr. Igor Siwanowicz, HHMI Janelia Farm Research Campus.

biocanvas:

Rotifers

Rotifers are tiny multicellular organisms found commonly in freshwater environments around the world. They are largely considered to be the smallest animals on Earth, composed of over 1,000 cells complete with a full digestive system and jaws but only reaching the size of a microscopic amoeba. They can be found in the most extreme environments, including the Mojave Desert where they enter dormancy when their habitats dry up. Scientists in Antarctica have recently discovered single cell organisms existing deep below ice sheets, but they’re looking even harden to see if more complex creatures like rotifers have been able to survive without sunlight in sub-zero temperatures for nearly a million years.

Image by Dr. Igor Siwanowicz, HHMI Janelia Farm Research Campus.

(Source: olympusbioscapes.com, via somuchscience)

Reblogged from sciencenote
Reblogged from wildcat2030